

SMD Snow Mobility Kalind Carpenter

Robotics Engineer, Robotic Vehicles and Manipulators Group Jet Propulsion Laboratory, California Institute of Technology

Objectives

- Enabling mobility on unconsolidated powder snow and slush
 - Highly compliant wheels to maximize contact patch of wheels
 - Treads to provide thrust in unconsolidated snow and traction on packed snow and ice
- Instrumentation
 - Roving GPS for mapping glacial surface topography
 - Tethered results achieved, untethered soon

Overarching Goals

What:

- Human portable snow mobility platform
- Modular instrument interface
- Impact tolerant low cost design

Why:

- Increase measurements in field, human portable "Roomba" sensor
- Large area coverage, many deployed from helicopters
- Reduced cost ice sheet science measurements, small "printed" robot

Where:

- Greenland ice sheets
- Antarctica ice sheets

State of the Art Comparisons

Platform	PUFFER	GROVER	Cool Robot	SnoBot 2
Mass	0.25 kg	363 kg	61 kg	14.6 kg
Speed	1 km/h (1.8 km/h Straight)	2 km/h	2.88 km/h	3.6 km/h
Ground Pressure	1.16 kPa	*	15 kpa	1.45 kPa
Slope	32 degree	*	30 degree	*

PUFFER GROVER Cool Robot SnoBot 1 & 2

Preiminary Tests

Lab and field tests of PUFFER in unconsolidated snow.

Preiminary Tests

Initial Testing with Compliant Wheels

Location: Colorado

Date: November 2016

Antarctica "Stow Away"

Antarctica "Stow-Away" Experiment Location: Mt. Erebus, Antarctica

Date: December 2016

Custom Compliant Wheels

Preiminary Tests

Compliant Wheel Field Testing

Location: Big Bear, California December 2016 Date:

Cold Tolerant Polymer

Quantitative Field Testing

Location: Waterman Mountain, California

Date: January 2017

© 2017 California Institute of Technology. Government sponsorship acknowledged.

Endurance Test

Endurance

180 mAh 2s Battery

Slope Tests 32 Degree Slope

Sush Vobility

OGPS Logging

The instrument payload for this effort is a RTK GPS logging system, which will be used to build topographic maps while roving over large snow and ice covered areas.

GPS Logging

Tethered GPS Logging Results

Conclusion and Future Work

- Feasibility of PUFFER mobility on snow demonstrated!
- Slopes up to 32 degrees! Demonstrated
- Tether-less GPS data logging near completion
- Next targets:
 - GPS Logging components to snow mobility platform
 - Full mobility endurance
 - More challenging slopes up to 30 + degrees unconsolidated snow

